首页> 外文OA文献 >Load curve data cleansing and imputation via sparsity and low rank
【2h】

Load curve data cleansing and imputation via sparsity and low rank

机译:通过稀疏性和低等级加载曲线数据清理和插补

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The smart grid vision is to build an intelligent power network with anunprecedented level of situational awareness and controllability over itsservices and infrastructure. This paper advocates statistical inference methodsto robustify power monitoring tasks against the outlier effects owing to faultyreadings and malicious attacks, as well as against missing data due to privacyconcerns and communication errors. In this context, a novel load cleansing andimputation scheme is developed leveraging the low intrinsic-dimensionality ofspatiotemporal load profiles and the sparse nature of "bad data.'' A robustestimator based on principal components pursuit (PCP) is adopted, which effectsa twofold sparsity-promoting regularization through an $\ell_1$-norm of theoutliers, and the nuclear norm of the nominal load profiles. Upon recasting thenon-separable nuclear norm into a form amenable to decentralized optimization,a distributed (D-) PCP algorithm is developed to carry out the imputation andcleansing tasks using networked devices comprising the so-termed advancedmetering infrastructure. If D-PCP converges and a qualification inequality issatisfied, the novel distributed estimator provably attains the performance ofits centralized PCP counterpart, which has access to all networkwide data.Computer simulations and tests with real load curve data corroborate theconvergence and effectiveness of the novel D-PCP algorithm.
机译:智能电网的愿景是建立一个智能电网,其对服务和基础设施的态势感知和可控性达到前所未有的水平。本文提倡使用统计推断方法来使功率监视任务更可靠,以防止由于错误的读数和恶意攻击而导致的异常影响,以及针对由于隐私问题和通信错误而导致的数据丢失。在这种情况下,利用时空负荷分布的低固有维数和“不良数据”的稀疏性,开发了一种新颖的负荷清除和注入方案。采用了基于主成分追踪(PCP)的鲁棒估计器,其实现了双重稀疏性-通过异常值的\\ ell_1 $规范和名义负荷分布的核规范来促进正则化,将不可分离的核规范重铸为适合分散优化的形式后,开发了一种分布式(D-)PCP算法如果使用D-PCP收敛并且满足资格不平等问题,使用新颖的分布式估计器就可以证明其集中式PCP对等方的性能,该对等方可以访问所有网络范围的数据。实际负载曲线数据进行的测试并证实了该小说的收敛性和有效性D-PCP算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号